Term Paper Guidelines PHYS 798C Fall 2025 Prof. Steven Anlage

The goal is to write 2 papers on technical topics in superconductivity. The first (due Oct. 30) is about a fundamental topic in superconductivity. The second (due at the end of the semester) will be about an applied topic. The objective is to drill down (a little bit) on a fundamental topic of interest to you, and to summarize what you learn in a clear and compelling document. The paper does not have to be long, 4 or 5 pages of text are fine.

Format: Follow the format of Physical Review A/B/E articles for references, sections, figures, etc. Include an abstract, introductory section (including a brief outline of the paper), and conclusions. This paper may pass as your "scholarly paper" requirement for the Physics Ph.D. program. The paper should be typed in LaTex (or REVTex) and double spaced, 12 pt type or larger. Style and clarity are important in all writing; have a friend proof-read your paper. Please have a native English speaker read and correct the paper, or use a large language model to clean it up. Figures must be used, but figures taken from other sources should be referenced. Please include a descriptive figure caption in your own words for all figures. Please have the figures integrated into the text, rather than collected together in a Figure section at the end of the paper.

Plagiarism: Please do not copy from any other sources. Also, when submitting the paper, explain the extent to which you employed large language models (e.g. ChatGPT) to "improve" your manuscript. Verbatim copying of passages from other papers, published or unpublished or transparent paraphrasing of other work, is forbidden. You may use the results of other papers, of course, but they must be referenced.

Content: Write an overview of your topic that can be read and understood by the other students in the class. Define terms and acronyms (i.e. SQUID), avoid the use of jargon, and put things in a logical order. Clearly define all quantities that appear in equations! This paper should introduce an intelligent newcomer to the topic. An exhaustive listing of all references in the field, or a repetitive unenlightening summary (in 2014, Smith made wiffnium, with a T_c of 102 K. In 2015, Jones made woofnium, with a T_c of 103 K, etc.) is <u>not</u> desirable. Also please do not choose a topic that is already well documented with wiki pages and review articles, if possible. An understandable discussion of key ideas, simple calculations and quantitative estimates, and anything else which indicates that you understand something about superconductivity and can explain it to beginning researchers in the field is desirable.

It is also important to focus the paper and go into quantitative detail on at least one or two aspects of the subject. For example, one should not simply mention a stream of results without any further discussion. Something should be discussed in depth, with quantitative and detailed analysis presented. Also avoid the use of qualitative statements such as "superconducting XYZ devices are clearly superior to normal metal XYZ devices." Give numbers and quantitative justification for all claims. Don't hesitate to introduce equations which illustrate the physics behind your arguments. If you write a paper on an experimental topic, be sure to include a discussion of theory relevant to the experiment. If you write on a theoretical topic, be sure to discuss experimental consequences of the theory.

To broaden your horizons a bit, choose a paper topic that is not directly related to your research. If you want to write about a topic not on the list, please discuss it with me.

Bonus points will be awarded for anyone who develops a stand-alone "legacy product" that benefits future students and researchers. This could include, for example, code to calculate surface impedance, tunneling conductance, and other quantities in BCS theory or its generalizations, or numerical solutions to common problems in Eliashberg theory or the Bogoliubov equations, the BTK model, time-dependent Ginzburg-Landau theory, etc. Another possibility is to create a thoughtful PhET-like interactive computer simulation/demonstration related to superconductivity. Consult with me.

Please upload your pdf paper by 23 October, 2025. A copy will be returned to you with comments, and these comments should be helpful for composing your second paper.

Possible Fundamental Superconductivity Topics

Andreev reflection, bound states at surfaces of unconventional superconductors

Angle-Resolved Photoemission spectroscopy (ARPES) of the Fermi surface and energy gap in HTS

What lies beyond BCS theory?

The Bernoulli Effect in superconductors

C₆₀ superconductors, field-effect in C₆₀ films

Coexistence of antiferromagnetism and superconductivity in HTS and other superconductors

Coexistence of ferromagnetic and superconducting order

Critical behavior of superconductors (heat capacity, thermal expansion, penetration depth, etc.)

Dynamic Casimir Effect measured with SQUID mirror

Electric Field Effect (electronic doping) in superconductors

The Electron-Phonon mechanism in superconductors (including the isotope effect)

Enhancement of superconductivity by engineering the dielectric environment

Fluctuation diamagnetism above T_c in the pseudogap region

Hall Effect below Tc in LTS and HTS

Higgs mode in superconductors

High Field (>30 T) properties of superconductors. Fulde-Ferrell-Larkin-Ovchinikov State

Hubbard model and HTS pairing mechanism

Hydride superconductivity

Infrared and Optical properties of superconductors - The sum rule in HTS

Kosterlitz-Thouless transition in superconducting thin films

Leggett mode in multi-band superconductors

Light-induced (mostly THz) transient superconductivity

Magnetic and non-Magnetic impurities in HTS

Marginal Fermi Liquid theory of HTS

Mesoscopic superconductors - Andreev scattering, Andreev billiards

Using metamaterial structures to modify the superconducting pairing interaction

MgB2 superconducting properties and/or applications

Multi-terminal Josephson junctions

Nano-scale superconductivity, proximity effect

Nernst Effect above T_c in the pseudogap region

Neutron spectroscopy of collective modes in HTS and other superconductors

NMR measurements in superconductors

Nonlinear Meissner effect

Non-equilibrium superconductivity (quasiparticle and phonon dis-equilibrium induced by microwaves)

Organic superconductors

p-wave pairing in superconductors and superfluids

The Proximity Effect, superconductor/ferromagnet proximity coupling

Pseudogap phenomenon in HTS - stripe phase

Theory of and Evidence for a Quantum Critical Point in the HTS phase diagram

High-field quantum oscillation measurements in cuprates and other superconductors

Quasi-1D superconducting films grown on carbon nanotubes

Room temperature superconductivity – where is it? What would it look like? Do we already have it?

Practical utility, or lack thereof, of room temperature superconductors

Rotating superconductors and the London moment

S/F/S Josephson junctions, spin-triplet proximity effect

SO(5) theory of antiferromagnetism and HTS

Spin-charge separation, Charge fractionalization, Visons

Spin fluctuation pairing mechanism in HTS and pnictide superconductors

SQUID ground state wavefunction pairing symmetry experiments

STM and tunneling spectroscopy of superconductors

Superconducting experiments and detectors operating in earth orbit and beyond.

Superconductivity in carbon nanotubes, twisted-bilayer graphene and doped diamond

Superconductivity in the presence of spin imbalance

Superconductivity in the Gravity-Probe B experiment

Time-reversal symmetry breaking states in superconductors and their measurement

Topological superconductivity and Majorana Fermions

Ultrasonic attenuation in unconventional superconductors

Vortex imaging techniques (neutrons, magnetic force microscopes, SQUID microscopes, etc.)

Vortex Glass - Vortex Liquid - Vortex solid phase transitions

Exotic vortex phases - Bose glass, hexatic phase, etc.

Possible Applied Superconductivity Topics (2nd paper)

Classical superconducting digital computers (choose a focused topic)

HTS and MgB₂ wire production

HTS Tape coating methods (Rabits, IBAD, etc.)

Quantum superconducting computers (choose a focused topic)

ReBCO HTS tapes for use in high-field magnets – impact on nuclear fusion

Extremely low-level measurements using SQUIDs

Superconducting X-ray detectors

Superconducting single photon detectors

Superconducting microwave kinetic inductance detectors

Superconducting detectors used in astronomical observations

Transition edge sensors

Some Previous Term Paper Titles:

Transport Properties of the Electron-doped Superconducting Cuprates

Superconductors for Wireless Applications

Imaging Techniques for Vortices in Superconductors

Scanning Tunneling Microscopy and Scanning Tunneling Spectroscopy on Superconductors

Extremely Low-Level Measurements Using DC SQUID

Report on Rapid Single Flux Quantum (RSFQ) Logic

Proximity Effects of Superconductors

Infrared and Optical Properties of Superconductors

Extremely Low Level Measurements Using SQUIDs

Kosterlitz-Thouless Transition in Two-Dimensional Superconductors

Manifestations of the Casimir effect in superconductors

Superconductors in Rotation

Superconductors in the presence of weak inertial and gravitational fields

The pseudogap of the angle resolved photoemission spectroscopy and the resonating valence bond model in high temperature superconductors

Thermally-Driven Melting of the Vortex Lattice

Quantum phase transition: in cuprate superconductors

High-T_c Superconductors and the Hubbard Model

Models for the proximity effect

Chaos and Nonlinear Dynamics in Josephson Junctions

Vortex Imaging Techniques

Magnetic Levitation with Superconductors

Andreev Reflection